
An Integrated Performance Visualizer for
MPI/OpenMP Programs?

Jay Hoeinger1, Bob Kuhn1, Wolfgang Nagel2, Paul Petersen1, Hrabri Rajic1,
Sanjiv Shah1, Je� Vetter3, Michael Voss1, and Renee Woo1

1 KAI Software
Intel Americas, Inc.

Champaign, Illinois 61820
fjay.p.hoeflinger, bob.kuhn, paul.m.petersen, hrabri.rajic, sanjiv.shah,

michael.voss, renee.woog@intel.com
2 Center for High Performance Computing
Dresden University of Technology, Germany

nagel@zhr.tu-dresden.de
3 Center for Applied Scienti�c Computing
Lawrence Livermore National Laboratory

Livermore, California 94551
vetter@llnl.gov

Abstract. As cluster computing has grown, so has its use for large sci-
enti�c calculations. Recently, many researchers have experimented with
using MPI between nodes of a clustered machine and OpenMP within a
node, to manage the use of parallel processing. Unfortunately, very few
tools are available for doing an integrated analysis of an MPI/OpenMP
program. KAI Software, Pallas GmbH and the US Department of Energy
have partnered together to build such a tool, VGV. VGV is designed for
doing scalable performance analysis - that is, to make the performance
analysis process qualitatively the same for small cluster machines as it
is for the largest ASCI systems. This paper describes VGV and gives a
avor of how to �nd performance problems using it.

1 Introduction

Cluster computing has emerged as a defacto standard in parallel computing
over the last decade. Now, researchers have begun to use clustered, shared-
memory multiprocessors (SMPs) to attack some of the largest and most complex
scienti�c calculations in the world today [8, 2], running them on the world's
largest machines including the US DOE ASCI platforms: Red, Blue Mountain,
Blue Paci�c, and White.

MPI has been the predominant programmingmodel for clusters [12]; however,
as users move to \wider" SMPs, the combination of MPI and threads has a

? This work was performed under the auspices of the U.S. Dept. of Energy by Univer-
sity of California LLNL under contract W-7405-Eng-48.

\natural �t" to the underlying system design: use MPI for managing parallelism
between SMPs and threads for parallelism within one SMP.

OpenMP is emerging as a leading contender for managing parallelism within
an SMP. OpenMP and MPI o�er their users very di�erent characteristics. De-
veloped for di�erent memory models, they �ll diametrically opposed needs for
parallel programming. OpenMP was made for shared memory systems, while
MPI was made for distributed memory systems. OpenMP was designed for ex-
plicit parallelism and implicit data movement, while MPI was designed for ex-
plicit data movement and implicit parallelism. This di�erence in focus gives the
two parallel programming frameworks very di�erent usage characteristics. But
these complementary usage characteristics make the two frameworks perfect for
handling the two di�erent parallel environments presented by cluster computing:
shared memory within a node and distributed memory between the nodes.

Unfortunately, simply writing OpenMP and MPI code does not guarantee
eÆcient use of the underlying cluster hardware. What is more, most existing
tools only provide performance information about either MPI or OpenMP, but
not both. This lack of integration in our performance tools prevents users from
understanding the critical path for performance in their application. To do a
good job of performance analysis for such codes, users need detailed information
about the expense of operations in their application. Most likely, message pass-
ing activity and OpenMP regions are related to the most expensive operations.
Viewed in this light, the user needs a performance analyzer to understand the
interactions between MPI and OpenMP. For pure message passing codes, sev-
eral performance analysis tools exist: Vampir [11], TimeScan [3], Paragraph [10],
and others. For pure OpenMP codes there is GuideView [7] and a few other pro-
prietary tools from other vendors. For a combination of MPI and OpenMP, we
know of only one other tool - Paraver [4].

To address the need for an integrated performance analysis tool, KAI Soft-
ware and Pallas GmbH have partnered with the Department of Energy through
an ASCI Pathforward contract to develop a tool called Vampir/GuideView, or
VGV. This tool combines the capabilities of Vampir and GuideView into one
tightly-integrated performance analysis tool. From the outset, its design targets
performance analysis on systems with thousands of processors.

The purpose of this paper is to describe this tool, how it may be used, and
how it can help pin-point the source of performance problems in MPI/OpenMP
programs.

2 Related Work

A number of existing tools provide performance analysis of message passing
programs. XPVM [5] can be used to analyze the performance of PVM programs.
It provides the user an instrumented messaging library and provides a graphical
user interface (GUI) for visualizing the performance. The user need not insert
instrumentation in their code because the instrumentation exists already in the
instrumented library. Vampir [11] and Paragraph [10] are used for MPI programs.

These tools use the MPI pro�ling interface to capture all MPI calls, then merge
the trace information into a single trace �le. A visualization program later reads
the trace �le and draws a graphical representation of the messaging activity
between processors.

There are a number of tools for analyzing the performance of HPF codes,
which o�er a shared memory view to the user, but produce message passing
code after having been compiled. The Carnival [13] and Parade [6] systems are
examples of these tools. Carnival maintains links to the source code from the in-
strumentation, so that the user can relate performance to the program, although
it was implemented only on IBM systems, to our knowledge. The PARADE sys-
tem uses by-hand instrumentation and does post-execution \trace animation"
through the POLKA animation system.

The Paradyn [1] tool does dynamic instrumentation of a running program
by replacing existing instructions with branches to small sections of code called
trampolines that allow the calling of various instrumentation functions. This
provides a very low-overhead and exible method of instrumentation, but the
focus of that project is di�erent from ours since they do not make extensive use
of information about the program gathered by a compiler.

The Ovaltine [9] project has developed a tool to analyze the overhead of
OpenMP codes, as a way of comparing achieved and achievable performance for
a particular code. This type of analysis is already present in the Guideview part
of VGV.

The Paraver [4] project, like our own, is focused on building a tool for ana-
lyzing the performance of programs that integrate MPI and OpenMP. Paraver
is based on a binary instrumenter, that can instrument the MPI functions in
a program as well as the OpenMP support functions. Any instrumented region
writes trace records to a trace �le, which are then displayed through a GUI. The
GUI has facilities for user-selected time-scales and zooming in on an arbitrary
time range in any display window. The goals of the Paraver project are similar
to those of the VGV project, although it is not clear how important scalability
is for Paraver. Also, they rely on binary instrumentation, where VGV is based
on compiler-inserted instrumentation.

3 Goals of the Project

The main goals of the VGV project are to create an integrated MPI/OpenMP
performance analysis tool that is easy to use and that scales well to even the
largest systems currently available. This new tool is largely based on the existing
Vampir and GuideView tools.

3.1 Scalability

A performance analysis tool faces new problems when it is used for systems with
thousands of processors. If the tool is not careful, the amount of information
gathered about the performance of a program can become very large, �lling

disks or causing large data transfer times. The amount of information displayed
on-screen can overwhelm the user if it is not displayed appropriately, and on-
screen display space is limited, anyway. The aggressive goal of the VGV project
is to quadruple the number of processors that can be analyzed every year for the
next two years. This year VGV can handle 1000 processors.

3.2 Integration

To perform e�ective performance analysis with VGV, there must be an inte-
gration of information from Vampir and GuideView. This not only avoids the
work of manually coordinating output from the two tools, but also provides a
platform for synthesizing an overall performance report. The performance data
of both tools should also be integrated with source code information.

3.3 E�ective Data Presentation

VGV should present an interface which makes the experience of using it for
solving performance problems on large machines not materially di�erent from
solving such problems on small systems. The tool should also be able to draw
the user's attention to potential performance problems, and help the user locate
the source of those problems in the program.

4 Using MPI with OpenMP

Before describing how VGV intends to meet its goals, we will briey mention
some key issues that must be addressed when using MPI with OpenMP. MPI
may be used with OpenMP, but the two systems have no knowledge of each
other, so a few basic rules must be followed to ensure that they do not interfere
with each other.

In general, MPI implementations are not thread-safe, so MPI functions can
not be safely used when more than one OpenMP thread is active. Therefore,
calls to MPI functions should be done either outside OpenMP parallel regions,
as shown in Figure 1, or inside a region in which only one thread is active, such
as a MASTER region or a SINGLE region, as shown in Figure 2.

In addition, if MPI calls are used in a single-threaded section of an OpenMP
parallel region, OpenMP barriers on both sides of the single-threaded section are
needed to enforce data consistency. This makes sure that the MPI call sees a con-
sistent view of data, and that the following code section sees any modi�cations
to data caused by the MPI call.

Since message passing calls are hard-coded into the program, the messaging
structure of the program can not easily adapt to changing patterns of computa-
tion. Therefore, the messaging will typically be done to support a �xed structure
in the code. OpenMP, on the other hand, can dynamically adjust the number of
threads brought to bear on the various parallel loops within the code, so it can
adjust to changes in the �ne-grained structure of the computation.

CALL MPI SEND(A(1), N, MPI REAL, 1, tag, comm, ierr)

CALL MPI RECV(A(1), N, MPI REAL, 0, tag, comm, status, ierr)

!$omp parallel do shared(A, B, N)

DO I=1,N

B(I) = F(A(I))

END DO

Fig. 1. Example of using MPI to exchange data outside an OpenMP parallel region.

!$omp parallel shared(A, B, N)

!$omp do

DO I=1,N

B(I) = F(A(I))

END DO

!$omp barrier ! to insure consistent memory

!$omp master

CALL MPI ALLREDUCE(A, RA, N, MPI REAL, MPI SUM, 0, comm)

!$omp end master

!$omp barrier ! to insure consistent memory

!$omp do

...

!$omp end parallel

Fig. 2. Example of using MPI to do a reduction operation inside an OpenMP parallel
region.

Typically, a �xed number of MPI processes are used, corresponding to the
number of nodes being used for the computation. The number of processors
within each node would represent the maximum number of processors that can
be brought to bear on a parallel loop being run within a single MPI process.
In adaptive codes, the amount of work in a particular area of a grid can vary
widely, so the number of OpenMP processors used in that area might likewise
vary. If there is only a small amount of work in a given parallel loop, then
only a small number of processors need be used (less processors used means less
synchronization overhead).

5 Structure of the Tool

The ow of the integrated tool follows 4 steps:

1. instrumenting the program at compile time,
2. generating an integrated MPI/OpenMP trace �le at runtime,
3. post-run performance analysis for MPI with Vampir,
4. analyzing OpenMP performance with GuideView.

This design integrates Vampirtrace and Vampir with the OpenMP compo-
nents: Guide, the Guide Runtime Library, and GuideView.

Like most MPI performance analysis tools, Vampirtrace uses the MPI library
wrapper interface for instrumentation. As each MPI call is performed, an event
is written to a trace �le. Vampir is the post-run trace �le analysis tool.

Guide is a portable OpenMP compiler for Fortran and C++ that restructures
source code and inserts calls to the Guide Runtime Library. The Guide Runtime
Library layers on top of threads to implement OpenMP functions. The library
is instrumented to call clock timers around all the signi�cant OpenMP events.
At the end of a run, the information gathered from these timers is written into
a statistics �le.

The heart of the MPI and OpenMP integration occurs at runtime. The instru-
mentation of OpenMP andMPI requires coordination. This is achieved by adding
OpenMP events to the Vampirtrace API. The Guide Runtime Library is mod-
i�ed to instrument interesting OpenMP events. For each interesting OpenMP
event, the execution times are put into a data structure that is time-stamped
and sent to the trace �le.

In the next phases of the project, dynamic instrumentation will become more
important. Then, the user will be able to identify at run time which parts of the
program should be instrumented and traced to get a closer and more focused
view to performance bottlenecks. The dynamic instrumentation will combine
with and complement the compiler-inserted instrumentation.

6 Usage of the Tool

Once an integrated MPI/OpenMP trace �le has been created during the appli-
cation run, it can be viewed by an integrated user interface. Vampir shows the
trace �le events ordered by time in the timeline display. When an MPI process
executes an OpenMP region, a curvy line glyph appears at the top of that pro-
cess' time line. The user can select that glyph to view that OpenMP region, or
can select a set of MPI processes or a time line section for OpenMP analysis.

OpenMP analysis aggregates the OpenMP data structures from all the trace
�le events in the selection. Then the aggregated data is written to a �le where a
GuideView server process reads the �le.

GuideView displays the OpenMP regions for each MPI process as a separate
set of OpenMP data. In this way, the user can use GuideView tools to select a
subset of the hundreds of MPI processes that may be running and sort by any
OpenMP performance measure. Examples of OpenMP performance measures
for sorting are: scheduling imbalance, lock time, time spent in a locked region,
and overhead. The user can specify that GuideView show the top or bottom n,
where the user speci�es n. This mechanism allows a user to compose compound
performance queries by sorting on one criteria, �ltering the top responders, and
then sorting by another criteria.

The user can also view the subroutine pro�le for one or a selection of MPI
processes within GuideView. This can be viewed as inclusive to allow the user to
understand the call tree structure, or exclusive to understand which subroutines
consume the most time.

One of the important uses of the tool is to locate regions of the program
where some processors spend much time waiting while others are doing useful
work. This is referred to as a load-imbalance. From the color-coded display, the
user can determine how much time each processor spends waiting.

Besides the new analysis features for the OpenMP parts, the usual analy-
sis features of Vampir can be used for the whole program including all parts.
As a new feature, hardware performance monitor information is now available
for further inspection. Current processor architectures usually o�er performance
monitor functionality, mostly in the form of special registers that contain various
performance metrics like the number of oating-point operations, cache misses
etc. The use of these registers is limited because there is no relation to the pro-
gram structure: an application programmer typically does not know which parts
of the application actually cause bad cache behavior. By extending the Vampir
trace format, this data is now available inside the Vampir windows to provide
identi�cation mechanisms for functions with low performance properties.

As the systems under investigation could have thousands of processors, the
scalability requirement has introduced a couple of new hierarchical concepts for
the Vampir windows. Especially, a exible grouping concept has been developed
to show data just related to the right level of abstraction: showing information
for all processes, showing just accumulated data for the SMP nodes, showing
just information for the master thread, etc. This feature enables end users to
easily dive into the important program regions that have performance problems.

A further key use of VGV is source code browsing. The source code associated
with any part of the performance data may be brought up in a browsing window
by clicking the mouse on the data display.

7 Finding Performance Problems with VGV

Figures 3 and 4 show the performance of the MPI/OpenMP version of the pro-
gram SWEEP3D. In a hypothetical experiment, a user may have run this pro-
gram on two MPI processes, with four OpenMP threads in each, and discovered
that it exhibits very poor speedup. The user could then run VGV and begin
with a whole-program view of the performance, such as the frame at the top
of Figure 3. This view shows the execution activity for each MPI process as a
horizontal bar. The messaging activity between the processes is shown as lines
connecting the two process bars. The regions during which OpenMP activity
exists is indicated as regions where the wiggle glyph appears at the top of the
process bar. As can be seen from the Figure, nearly all of each process bar is
covered by OpenMP parallel regions. So where is the problem?

The problem may be investigated by adding OpenMP detail to the MPI
activity. The middle frame in Figure 3 adds OpenMP thread activity to the
MPI information. We can begin to advance a theory about the cause of the
problem from this frame, because there seem to be a large number of small
OpenMP execution regions, separated by large gaps.

Fig. 3. Performance display frames for the SWEEP3D program, run on two MPI pro-
cesses with four OpenMP threads on each. The \curvy line glyph" line at the top of a
bar indicates that an OpenMP parallel region is active. The top frame shows the over-
all timeline of the two MPI processes. The middle frame shows the same information,
with the OpenMP threads displayed as well. The bottom frame shows the OpenMP
thread activity from a single parallel region.

By zooming in on a single OpenMP region (as in the bottom frame of Fig-
ure 3), we see that the parallel execution time of each \helper" thread is sepa-
rated by a gap at least as large as the execution time itself.

This information seems to point to a large number of relatively small paral-
lel regions, dominated by thread startup and shutdown times. To con�rm that
theory, we can look at aggregated thread information, as in Figure 4. In the
top frame of that Figure, we see the aggregated whole-program information for
all threads, and the speedup graph for the code. This information corroborates
the view that a large fraction of the time spent in each process is \sequential"
(the left-most region in each bar). This corresponds to the thread startup and
shutdown times. The parallel execution time is indicated in each right-most bar
region, and is a small fraction of the total time. The speedup graph shows that
the potential for speedup is very poor in this code.

The aggregated performance information for the whole program, displayed
per thread (as in the middle frame of Figure 4), con�rms this view. All threads
are dominated by sequential execution time. Finally, in the bottom frame of
Figure 4 we see the thread information displayed for a single OpenMP parallel
region, obtained by clicking on the glyph for a single parallel region.

Each VGV display contains implicit links to the original source code for the
program generating the performance data. Any of the timeline regions may be
\clicked" to obtain a window positioned at the source code that produced the
data. By using this feature, it is possible to display the parallel loops within
SWEEP3D that we are judging to be \too small". From the source code, we
could determine how to increase the amount of work done in the parallel regions.

Comparative analysis can also be done by loading trace �les from more than
one program run. VGV will plot the results together in any of its frames, to
make comparison easy, as in Figure 5. This could allow us to experiment with
various input data sets, to see how each a�ected the performance of the program.
In the Figure, three program runs are being compared, the serial version of the
program, a 2 (MPI) x 2 (OpenMP) version and a 4 (MPI) x 1 (OpenMP) version.

8 Scalability of the Tool

Prior to this project, GuideView already used light-weight summarization tech-
niques to analyze performance statistics for the OpenMP processors. Vampir-
trace, on the other hand, wrote trace records to a single trace �le for every
MPI call. This produces a potentially very large trace �le that must not only be
stored, but also completely read and analyzed to provide the user with a display.

To be scalable, VGV must adequately address the following issues:

{ the disk storage requirements of an event-based tracing tool could become
enormous for long runs with large numbers of processors,

{ workstation screens have limited space for displaying performance informa-
tion,

{ simply �nding a potential performance problem may be very hard in the
blizzard of information potentially generated from a massive run.

Fig. 4. Performance display frames for the SWEEP3D program, run on two MPI pro-
cesses with four OpenMP threads on each. The top frame shows the whole program
view, displaying aggregated information from all threads and processes. The middle
frame shows the threads view of multiple parallel regions. The bottom frame shows
the threads view of a single parallel region. In each view, the frames show that the
vast majority of time is being spent in sequential execution (the left-most bar region).
Parallel execution is the right-most bar region in all cases.

Fig. 5. Comparing three program runs with VGV.

Some of these issues have already been addressed in the current version of
VGV. Others will be implemented during the remainder of the project.

VGV will attempt to reduce the size of the trace �le through several means:

event compression - Specialized trace records can be used for some events
and encoded to save space. Collective communication events, which usually
require a full trace record for every process can be reduced to a single trace
record and a series of small records, one per task. Also, source code line
numbers can be encoded to save space in each trace record.

event combination - Events occurring commonly together can be replaced
by a single event. Very short events which are issued until the MPI state
changes (e.g. MPI IProbe / MPI Test) can be replaced by a single event
covering the entire interaction.

event summarization - Some events can be summarized by maintaining only
min/max/average values and discarding the events.

structured trace �le - The single trace �le can be replaced by multiple, hier-
archically structured �les. This also saves processing time because a top-level
summary �le can processed much more quickly than can the whole original
trace �le. This allows the user to see a summary then drill down to other
levels in the hierarchy for display.

tracing/instrumentation control - Tracing can be disabled or enabled ac-
cording to a variety of criteria. The user could place enable/disable trace
calls in the code, or could select speci�c events to enable/disable, or could
trace only certain MPI processes, or a variety of other criteria.

The on-screen presentation of the performance information can be made scal-
able through vertical scrolling of MPI process time-line information, as well as
back-to-front stacking of time-lines.

VGV will use data reduction to attempt to identify potential performance
problems for the user. Statistical analysis of the data for a single interval of the
user's program can identify processes or processors that require unusual (high or
low) amounts of various resources (e.g. cache misses, time, memory access time)
and mark them for the user.

We have found that the execution time of the analysis tool can be a major
fraction of the time required for the tool. For this reason, the tool will be parti-
tioned into a display component (DC) and a trace processing component (TPC).
The TPC can be parallelized and run on a small number of processors. The DC
can be potentially multi-threaded.

9 Future Directions for VGV

VGV is still in the design and development stage, since we are only in the second
year of the three-year project. We expect signi�cant improvements in the system
over the remainder of the project.

Possible future directions for VGV include:

{ Two way interaction between Vampir and GuideView. When the user selects
something in the GuideView display, VGV should map that back to the
Vampir Timeline. For example, when selecting a parallel region, a menu
item would zoom in on the �rst instance of the parallel region in the time
line so that you could see the actual event distribution inside the parallel
region.

{ Integrated resource management. Presently, Vampir and GuideView are run
in separate processes. This gives them no ability to co-manage the resources
they use. If they were combined in the same process, they could coordinate
their use of memory, use of the screen and use of disk space. They could also
react as a single unit to signals and user requests.

{ Move away from Java to some other, more portable, window manager. Java,
contrary to popular belief, has proven to be inconsistently portable when it
comes to managing the screen display. This is worse on older platforms and
can be attributed to some of the early Java implementations. A more mature
system, such as Motif, may be more portable.

10 Conclusion

Vampir/GuideView is intended to be a exible, easy-to-use tool for �nding
performance problems in programs written with a combination of MPI and
OpenMP, that run for extremely long times and use thousands of processors.
We know of no other commercial tool targeted at MPI/OpenMP, and certainly
none with the ability to handle the massive runs common on the ASCI machines.
During the remaining two years of its development for the ASCI project, we be-
lieve that it will become a tool that can be used for the largest ASCI clusters,
and will help users quickly pin-point performance anomalies in their codes.

References

1. B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. to appear
in Journal of Supercomputing Applications and High Performance Computing.

2. A.C. Calder, B.C. Curtis, and et al. High-Performance Reactive Fluid Flow Sim-
ulations Using Adaptive Mesh Re�nement on Thousands of Processors. In Super-
computing 2000: High Performance Networking and Computing Conference, 2000.
electronic pub.

3. Etnus LLC, http://www.etnus.com/Products/TimeScan/index.html. TimeScan
Multiprocess Event Analyzer, 2001.

4. European Center for Parallelism of Barcelona, Technical University of Catalonia,
http://www.cepba.upc.es/paraver/docs/OMPItraceIBM.pdf. Paraver Reference
Manual, 2000.

5. J.A. Kohl and G.A. Geist. XPVM 1.0 User's Guide. Technical Report ORNL/TM
12981, Oak Ridge National Laboratory, Oak Ridge, Tennessee, November 1996.

6. J.T. Stasko. The PARADE Environment for Visualizing Parallel Program Exe-
cutions: A Progress Report. Technical Report Technical Report GIT-GVU-95-03,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
Atlanta, GA, January 1995.

7. KAI Software, a division of Intel Americas,
http://www.kai.com/parallel/kappro/guideview. GuideView Performance
Analyzer, 2001.

8. A.A. Mirin, R.H. Cohen, and et al. Very High Resolution Simulation of Compress-
ible Turbulence on the IBM-SP System. In Supercomputing '99: High Performance
Networking and Computing Conference, 1999. electronic pub.

9. M.K. Bane and G.D. Riley. Automatic Overheads Pro�ler for OpenMP Codes. In
Proceedings of the European Workshop on OpenMP (EWOMP) 2000, Edinburgh,
Scotland, U.K., September, 2000.

10. M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs.
IEEE Software, 8(5):29{39, September 1991.

11. Pallas GmbH, http://www.pallas.de/pages/vampir.htm. Vampir 2.5 - Visualiza-
tion and Analysis of MPI Programs, 2001.

12. G.F. P�ster. In Search of Clusters: The Coming Battle in Lowly Parallel Comput-
ing. Prentice Hall, Upper Saddle River, NJ, 1995.

13. W. Meira Jr. and T.J. LeBlanc and A. Poulos. Waiting Time Analysis and Perfor-
mance Visualization in Carnival. In ACM SIGMETRICS Symp. on Parallel and
Distributed Tools, May 1996.

